วันพุธที่ 12 กรกฎาคม พ.ศ. 2560
การนำสมบัติของจำนวนจริงไปใช้ในการแก้สมการกำลังสอง
การนำสมบัติของจำนวนจริงไปใช้ในการแก้สมการกำลังสอง
ตัวแปร : อักษรภาษาอังกฤษตัวเล็ก เช่น x , y ที่ใช้เป็นสัญลักษณ์แทนจำนวน
ค่าคงตัว : ตัวเลขที่แททนจำนวน เช่น 1, 2
นิพจน์ : ข้อความในรูปสัญลักษณื เช่น 2, 3x ,x-8 ,
เอกนาม :
นิพจน์ที่เขียนอยู่ในรูปการคูณของค่าคงตัวแปรตั้งแต่หนึ่งตัวขึ้นไปที่มีเลขชี้กำลังของตัวแปรเป็นจำนวนเต็มบวกหรือศูนย์
เช่น -3, 5xy , 2yอ่านเพิ่มเติม

สมบัติของจำนวนจริงเกี่ยวกับการบวกและการคูณ
สมบัติของจำนวนจริงเกี่ยวกับการบวกและการคูณ มีดังนี้
1. สมบัติปิด
2. สมบัติการสลับที่
3. สมบัติการเปลี่ยนกลุ่ม
4. สมบัติการมีเอกลักษณ์
5. สมบัติการมีอินเวอร์ส อ่านเพิ่มเติม

จำนวนจริง
1. จำนวนอตรรกยะ หมายถึง
จำนวนที่ไม่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็ม หรือทศนิยมซ้ำได้
ตัวอย่างเช่น √2 , √3, √5, -√2, - √3, -√5 หรือ ¶ ซึ่งมีค่า 3.14159265...
2. จำนวนตรรกยะ หมายถึง
จำนวนที่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็มหรือทศนิยมซ้ำได้
ระบบจำนวนตรรกยะ
จำนวนตรรกยะยังสามารถแบ่งเป็น 2 ประเภท คือ
1. จำนวนตรรกยะที่ไม่ใช่จำนวนเต็ม หมายถึง
จำนวนที่สามารถเขียนให้อยู่ในรูปเศษส่วนหรือทศนิยมซ้ำได้ แต่ไม่เป็นจำนวนเต็ม
ตัวอย่างเช่น อ่านเพิ่มเติม

การให้เหตุผลแบบนิรนัย
การให้เหตุผลแบบนิรนัย (Deductive Reasoning)
การให้เหตุผลแบบนิรนัยเป็นการนำความรู้พื้นฐานซึ่งอาจเป็นความเชื่อ ข้อตกลง
กฎ หรือบทนิยาม ซึ่งเป็นสิ่งที่รู้มาก่อน
และยอมรับว่าเป็นความจริงเพื่อหาเหตุผลนำไปสู่ข้อสรุป เป็นการอ้างเหตุผลที่มีข้อสรุปตามเนื้อหาสาระที่อยู่ภายในขอบเขตของข้ออ้างที่กำหนด
ตัวอย่างที่
1 เหตุ 1.สัตว์เลี้ยงทุกตัวเป็นสัตว์ไม่ดุร้าย
2. แมวทุกตัวเป็นสัตว์เลี้ยง

การให้เหตุผลแบบอุปนัย
การให้เหตุผลแบบอุปนัย (Inductive Reasoning)เกิดจากการที่มีสมมติฐานกรณีเฉพาะ
หรือเหตุย่อยหลายๆ เหตุ เหตุย่อยแต่ละเหตุเป็นอิสระจากกัน มีความสำคัญเท่าๆ กัน
และเหตุทั้งหลายเหล่านี้ไม่มีเหตุใดเหตุหนึ่งแสดงให้เห็นถึงความเป็นสมมติฐานกรณีทั่วไป
หรือกล่าวได้ว่า การให้เหตุผลแบบอุปนัยคือการนำเหตุย่อยๆ แต่ละเหตุมารวมกัน
เพื่อนำไปสู่ผลสรุปเป็นกรณีทั่วไป เช่นตัวอย่างการให้เหตุผลแบบอุปนัย
1. สุนทรี พบว่า
ทุกครั้งที่คุณแม่ไปซื้อก๋วยเตี๋ยวผัดไทยจะมีต้นกุยช่ายมาด้วยทุกครั้ง จึงสรุปว่า ก๋วยเตี๋ยวผัดไทยต้องมีต้นกุยช่าย อ่านเพิ่มเติม

ยูเนียน อินเตอร์เซกชันและคอมพลีเมนต์ของเซต
ยูเนียน (Union)
ยูเนียน (Union) มีนิยามว่า เซต A ยูเนียนกับเซต
B คือเซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A หรือ เซต B
หรือทั้ง
A และ B สามารถเขียนแทนได้ด้วย สัญลักษณ์ A ∪ B
ตัวอย่างเช่น
A ={1,2,3}
B= {3,4,5}
∴ A ∪ B = {1,2,3,4,5}

สมัครสมาชิก:
บทความ (Atom)